Assimilation of Aura ozone data

I. Stajner, H. Hayashi, K. Wargan, L.-P. Chang, and S. Pawson

Global Modeling and Assimilation Office (GMAO)

NASA/Goddard

Ozone assimilation at GMAO

• Total ozone columns and stratospheric profiles from **SBUV/2** instrument are assimilated in near-real time into a parameterized chemistry and transport model (**CTM**) driven by GMAO assimilated winds (*Stajner et al, JGR 2004*, doi:10.1029/2003JD004118).

• This system was modified for assimilation of **OMI** total ozone columns and **MLS** profiles.

Previous work

- Previous work showed that assimilation of data from occultation and limb sounder instruments greatly improves the representation of lower stratospheric ozone:
 - POAM III over Antarctica (Stajner and Wargan GRL 2004, doi:10.1029/2004GL020846)
 - MIPAS globally (Wargan et al. submitted to QJRMS)
- These instruments provide high quality data in regions where SBUV/2 data are of lower quality or missing

POAM III assimilation

POAM III assimilation (red) improves representation of:

- (a) Wintertime accumulation of ozone in the lower stratosphere at Neumayer
- (b) Springtime depletion of ozone over the South Pole

MIPAS assimilation: mean profile

 Assimilation of limb sounder data provides lower stratospheric profile shape that is in better agreement with independent occultation data

MIPAS assimilation: variability

Assimilation of MIPAS (red):

- Increases variability of ozone in northern middle latitudes at 70 hPa (a).
- Improves agreement with SAGE qualitatively (a) and decreases RMS differences between SAGE and assimilation for high and medium ozone values (b).

Aura data

Aura ozone data were assimilated:

- Total column ozone data from OMI (OMTO3T) for September 20-30 and
- Stratospheric ozone profiles from MLS for pressure between 0.17 and 56 hPa (averaged values at midlevels) for September 24-29

• Preliminary evaluation includes comparisons with assimilation of SBUV/2 data and with independent ozone sonde data.

Total ozone column

Qualitatively correct features are seen in assimilated total ozone

8

Total column O-F residuals: Aura vs SBUV/2 assimilation

Total ozone
O-F residuals
for OMI drop
after MLS
assimilation
started on
September 24.

OMI O-F residuals are smaller than those for SBUV/2 (black) for Sept. 26-30

Comparisons with sondes on September 29, 2004

• Aura assimilation is in better agreement with sondes than SBUV/2 assimilation, especially for profile shape in the lower and middle stratosphere

Ozone hole

Evolution over Antarctica

- OMI assimilation reduces ozone in the troposphere (Sept. 20-24)
- MLS data starting on September 24 correct the profile: reduce ozone near 70 hPa and increase ozone near 200 hPa
- Need to investigate behavior in longer runs. Also, avoid assimilating total column data alone. Use averaging kernels.

Conclusions

Aura ozone data were assimilated:

- Preliminary evaluation shows qualitatively better total ozone fields with a better defined "ozone hole" and gradients in the lower stratosphere than in the SBUV/2 assimilation
- OMI total ozone column O-F residuals decrease when MLS data are introduced shows that data are consistent
- Aura assimilation compares better with independent ozone sondes than the SBUV/2 assimilation, as expected
- Further evaluations and scientific applications will follow ...